
© BiTAS – All rights reserved

Standards Council

Blockchain in Transport Alliance Standards Council (BiTAS)

BiTAS Tracking Data Framework Profile

BiTAS Tracking Data Framework Profile

ii

REVISION HISTORY

Version Date Author

Tracking Data
Framework Profile

February 27,
2019

Ben Kothari, BiTAS Tracking Data Work
Group Chair

 BiTAS Tracking Data Framework Profile

 iii

ACKNOWLEDGEMENTS

CORE
CONTRIBUTORS: BiTAS Tracking Document Work Group

Ben Kothari, WG chair Ampliflex
Doug Anderson Kleinschmidt Inc.
June Arnold BNSF
Riley Banks V&S Midwest Carriers Corporation
Mathew Bigelow Ziing Final Mile Inc.
Sebastian Cochinescu SupplyBlockchain, Inc.
Subhash Chowdary Aankhen Inc.
Emmanuel Eriksson Stratelogics Software Inc.
Trever Erlich Kenco Logistics
Alan Fong Fleet Complete
Stacey Geringer Collabrian Design & Technology
Maneesh Grover Wipro Technologies
Elizabeth Henderson Purolator Inc.
Mike Johnson Don Hummer Trucking
Jim Masloski Customs Direct
Jim McCullen Century Distribution Systems, Inc.
Robert Petti Lading Corporation
Krzysztof Radecki DAC SA
Devin Reilly Custom Pro Logistics

Rick Ryan Pitney Bowes
Jon Van Winkle VTV Solutions
Tim Wilson FedEx Services

APPROVERS: 2019 BiTAS Board of Directors

Dale Chrystie, chair FedEx Services
 Bart Boudreaux BNSF
 Ken Craig McLeod Software
 Mike Dieter Transplace
 Scott Friesen Echo Global Logistics
 Craig Harper JB Hunt
 Steve Hausman Triumph Business Capital

Dan Heinen Kleinschmdit
 Lori Heino-Royer Daimler
 Vaneeta Johnson Delta Cargo
 Mark Kessler, Sr. Trimble Transportation Group

Kevin Martin Freightwaves
 Mauricio Paredes P&S Transportation
 Gil Perez SAP
 Mahesh Saharanaman UPS
 Brad Taylor Omnitracs
 Amihai Zeltzer Salesforce

BiTAS Tracking Data Framework Profile

iv

COPYRIGHT

The BiTAS Tracking Data Framework Profile is owned by the Blockchain in Transport Alliance
Standards Council. Any attempt to copy this document and use it in whole or in part by any other
organization without the express written consent of the Blockchain in Transport Alliance
Standards Council will be viewed as copyright infringement.

CONVENTIONS

The Blockchain examples cited in this Specification are stored on a JSON string. An example of
this format is:

trackableEvent1 = {
 "ID" : "trackableEvent1",
 "name" : "Schedule Pickup",
 "location" : "location123", //link to location where freight will be picked from
 "trackableEntityID" : "trackableEntity123", // link to entity which is being tracked
 "reportedByID" : "party123",
 "reportedByRole" : "Shipper",
 "participants" : [
 {
 "ID" : "party456",
 "role" : "Carrier" // Service Provider responsible for moving the freight
 },
 {
 "ID" : "party789",// Operations Supervisor who is handing over freight to Carrier
 "role" : "OperationSupervisor"
 }
],
 "performedTime" : "2019-02-11T23:27:57-08:00"
}

 BiTAS Tracking Data Framework Profile

 v

Figures and charts included in this specification are drafted using Unified Modelling Language
(UML) class diagrams and charts. For more information on how to read the charts and diagrams
in this Specification, please refer to Section 6: Component Model.

BiTAS Tracking Data Framework Profile

vi

Contents

1.0 Foreword ... vii

2.0 Introduction .. vii

3.0 Scope ... 9

4.0 Normative references ... 9

5.0 Terms, Abbreviations and Definitions ... 9

6.0 Component Model .. 12

7.0 Common Classes ... 12

7.1 Meta Class ... 12

7.2 MeasureType Class .. 13

7.3 References ... 13

8.0 Tracking Classes... 14

8.1 TrackableEvent Class ... 14

8.2 EventParticipant class .. 15

8.3 TrackableEntity .. 15

9.0 Example ... 16

9.1 Simple Box Tracking ... 18

9.2 Multiple Package Tracking ... 18

9.3 Multiple level Tracking .. 21

10.0 Event Categorization ... 23

10.1 Planned Events ... 23

10.2 Unplanned Events .. 23

11.0 Future Versions ... 24

 BiTAS Tracking Data Framework Profile

 vii

1.0 Foreword

This document presents a model to track events which are generated by various processes
within a transportation network. This is a framework profile developed by the Blockchain In
Transport Alliance Standards Council (BiTAS) and, as such, several terms and definitions
related to tracking are introduced in this document. Significant effort has been spent
defining these terms.

Moreover, how these terms are related to each other to enable tracking lays the foundation
work for several other blockchain Work Groups in the BiTAS standards developing
organization. These terms include Shipment, ShipUnit, HandlingUnit, Conveyor,
TrackableEntity, Meta Class, MeasureType and References.

It is critical that readers of this profile, including other blockchain Work Group leads, clearly
understand the definition of these terms and how they relate to each other. Definitions and
requirements defined in this framework profile impact other BiTAS Specifications, ensuring
that terms and their meanings are consistent across BiTAS Specifications.

2.0 Introduction

The purpose of the BiTAS Tracking Data Framework Profile is to define core data structure
and links to other data structures required to answer the basic question – “Where is my
Shipment?” The purpose is to provide adequate information to quickly determine the
location of a shipment and to see how it is progressing through its planned route and
operational processes until it reaches its final delivery destination. Shipment tracking is a
very broad topic involving many processes, participants, systems, sensors and software
applications. This Profile is primarily focused on Location tracking among participants within
a transportation network. Other aspects of tracking may be covered in future releases.

The core data structures, TrackableEvent, TrackableEntity, EventParticipant, MeasureType,
Dimension and Reference are introduced in this document. This Profile describes the data
format, cardinality and relationship between these data structures. In addition, it defines
how these core data structures reference Location, Shipment and Party data structures,
which are being defined by other BiTAS work groups.

Figure 2 below shows an example where status information transmitted from devices
(financial and operational (finOps) applications, etc.) may be codified in a TrackableEvent
data structure and stored within Blockchain in near chronological order. Transportation
Management Systems (TMS), portals and apps may query TrackableEvent data stored within
Blockchain ledger to determine the current location and status of the shipment.

BiTAS Tracking Data Framework Profile

viii

Figure 2: Examples of Events being generated by various systems, applications and devices

BiTAS Tracking Data Framework Profile

 9

3.0 Scope

The current scope of this Profile is to only define and provide Location tracking information
for Shipment entities. In the future, this Profile may be enhanced to include custodial,
environmental and security related information. The primary focus of this Profile is to define
data structures related to how data may be persisted in a storage system including Blockchain
Ledger. This data may be queried by participants to find the current location status of
Shipment entities. Messaging data formats and other IoT streaming data formats are
currently out of scope.

4.0 Normative references

 Open GIS / IOT references as detailed in Section 11 of this Specification: External identifier of this
OGC® document: http://www.opengis.net/doc/is/sensorthings/1.0

5.0 Terms, Abbreviations and Definitions

 For the purposes of this document, the following terms and definitions apply:

Term or Abbreviation Definition

Shipment Groups of orders may be combined by a shipper. A set of orders to
be moved from/to a location on a given date time by any conveyor
is referred to as Shipment. Multiple orders can be grouped into a
single Shipment, or a Shipment may include items from different
orders and may include backorders as well as regular orders.
Shipment represents the movement of freight from one location to
another, activity at a cross-dock, and non-moving charges
associated with shipping activity. A shipment is uniquely identified
by an ID, and stores information related to total weights, but the
tracking occurs at the individual ShipUnit level.

ShipUnit A Shipment may contain multiple ShipUnits (SU) which may be
tracked separately or as one shipment entity for certain segments
of the transportation network. A Shipment is a logical collection and
aggregation of one or many ShipUnits. Each ShipUnit is uniquely
identified and tracked, but all share the same associated Shipment’s
ID (ShipmentID). ShipUnit describes how freight is packaged for
transportation.

ShipUnit is the lowest form possible for a TrackableEntity (defined
below). ShipUnit inherits from TrackableEntity, which is a recursive
data structure. However, ShipUnit is not recursive.

Conveyor Conveyor is any vehicle or Party responsible for moving the
Shipments.

http://www.opengis.net/doc/is/sensorthings/1.0

BiTAS Tracking Data Framework Profile

10

Active vehicle resources such as tractors or locomotives are
collectively referred to as DrivingUnit (DU). “Motor Engine” or a
power generating portion of the vehicle, which is responsible for
moving Shipments, is an example of a DrivingUnit. Telematics
devices and sensors are usually installed in a DrivingUnit.

A driver and the DrivingUnit he is operating is collectively referred
to as a Conveyor. In a simplest case, a person walking up a flight of
stairs to hand-deliver a box is also a Conveyor.

HandlingUnit Passive vehicle resources which are responsible for bearing or
storing the load of ShipUnits are collectively referred to as
HandlingUnit (HU). The smallest loadable unit of a vehicle which is
used to transport goods such as a container is an example of
HandlingUnit. Boxes, parcels, pallets, envelopes, etc. are examples
of HandlingUnit. ShipUnits (defined above) are packed and carried
inside a HandlingUnit.

Figure 5: Picture showing HandlingUnit, ShipUnit, DrivingUnit,
Conveyor

Each HU may be tracked separately, or an HU may contain multiple
HUs which may be tracked together as a single entity. The capacity
of the equipment is defined in terms of Effective Weight, Effective
Volume, Equipment Reference Units (ERUs) and equipment
dimensions, Compartments, Length, Width and Height.

HandlingUnit inherits from TrackableEntity (defined below), a
recursive data structure. HandlingUnit is a recursive representation
of HandlingUnit itself, but is specific to EquipmentType.

BiTAS Tracking Data Framework Profile

 11

Definition of Shipment, ShipUnit and HandlingUnit is expected to be
refined further in Specifications from the BiTAS Shipment
Component Work Group.

Party Party is any Enterprise (Company, Corp, LLC, etc.) that participates
and provides services within a transportation network. Party may
also represent any individual person, or group of people who
participate within the network.

A driver who operates a truck is an example of a Party. Party will be
fully defined by the BiTAS Party Component Work Group.

Resource Any human, device or machine responsible for transporting
ShipUnits, which needs to be tracked, is a Resource.

Document Document is defined to be any document(s) required to track and
monitor the execution of instructions or agreements which are
assigned to Shipments or Equipment.

Link Link is a unique identifier within a data structure record which refers
to (or points to) to another record stored elsewhere in the
Blockchain ledger. Within database terminology, the purpose of
link is like a foreign key relation between two tables. In the UML
model diagram, a dotted line between attributes of two classes is
shown as Link.

TrackableEvent TrackableEvent class is defined to store the information related to
any event which may happen during the journey of a shipment. It
contains sufficient information such that, upon querying, a user will
be able to track the current location and status of a shipment.

TrackableEntity TrackableEntity is a genesis class for anything trackable within the
blockchain. Currently, it serves as the base class for ShipUnit,
HandlingUnit, Document, and/or Conveyor. HandlingUnit is further
extended to create several subclasses including ShipUnit,
HandlingUnit, Trailer, Pallets, Boxes, Envelopes, etc.

In the future, it may be used by other BiTAS Work Groups to define
additional sub-classes or objects which may need to be tracked in
the Blockchain. Every time an event is written in the Blockchain, a
TrackableEvent object is created which represents the details about
the event.

Each TrackableEvent in the Blockchain links to TrackableEntity via
trackableEntityID.

TrackableEntity includes an attribute parentEntityID which points to
itself. The recursive feature of TrackableEntity enables modelling of
hierarchical grouping of related things. For example, a Box class
inherits from TrackableEnity, a Pallet class inherits from

BiTAS Tracking Data Framework Profile

12

TrackableEntity and also a Trailer class inherits from
TrackableEntity. The parentEntityID of Box points to Pallet and
parentEntityId of Pallet points to Trailer, and so on. This allows
tracking information right from the box to the Trailer in the
HandlingUnit Hierarchy.

TrackableEntity contains an array named “contents” which holds IDs
of TrackableEntity or its subclasses. IDs stored in “contents” array
in the blockchain refer to SU and HU objects which need to be
tracked in the Blockchain.

6.0 Component Model

Data structures defined within BiTAS working groups are represented as UML class diagrams.
Each data structure is defined as an object-oriented Class. A class may inherit common
attributes from a parent class. Common Meta class defines the common attributes which are
required for each class defined by any work group. Objects shown in blue color are core objects
required for tracking. Classes shown in yellow are classes related to Shipment and Party and
will be further extended by those work groups; however, the relationship between yellow and
blue classes may not be changed. Any changes to relationship between classes will change how
tracking is accomplished. A detailed example is shown below to illustrate how tracking is
accomplished by using this model.

Figure 6: Tracking Entity Model

7.0 Common Classes

7.1 Meta Class

The purpose of Meta class is to define common attributes which are needed by all entities
across various Work Groups. To avoid duplication of the same information within each

BiTAS Tracking Data Framework Profile

 13

class, a separate BiTAS Work Group will be responsible for defining common attributes.
Meta class in figure 5 is shown in a gray color. It is shown as an example to illustrate the
requirements to a separate Work Group.

Attribute Name DataType Purpose

 Meta Class

version String current version of the document

reportedByID String

Party ID responsible for writing data to the
blockchain ledger is already provided
blockchain framework. reportedByID
represents on whose behalf this data was
written.

reportedByRole String Role of the reporting party.

7.2 MeasureType Class

To represent 5 pounds of weight, users may use measure.size = 5 and measure.UOM=lbs.

Attribute
Name

DataType Purpose

MeasureType Class

size Decimal any decimal value

sizeText String any alphanumeric value

UOM String Unit of Measure. E.g. lbs, tones

7.3 References

References are an embedded array within TrackableEvent to store any IDs or information
of other entities to better corelate events. The purpose of this information is to match
events with other Documents or Entities with the Blockchain as well as external systems.
This class may also be by Shipment and Party Work Groups as an extensibility mechanism.

Attribute
Name Attribute DataType Purpose

Reference Class any name-value pair

name String E.g. WayBill, BOL#

value String E.g. 34379789

type String
Here are various types of references. E.g.
Tracking Number

BiTAS Tracking Data Framework Profile

14

8.0 Tracking Classes

8.1 TrackableEvent Class

The table below list the attribute names, datatypes and the purpose, required in order to
build TrackableEvent data structure.

Attribute Name Attribute DataType Mandatory Purpose

Standards

ID String Yes Unique identifier for the event.

name String Yes

Unique name which defines the
purpose of the event. Name and
meaning of each event will be
provided as example list.

locationID String No
Location where the event is
generated or originated from.

trackableEntityID String Yes

Entity which is being tracked.
Entity may be referred to as
ShipUnit, HandlingUnit, Document,
etc. This attribute only stores a
link to the class being referenced.
The actual referenced class is
stored elsewhere on the
blockchain.

performedTime String Yes

Actual time when the event is
performed. This time may be
different from the time when
information is stored in the
Blockchain ledger.

participants
EventParticipant
[0..*] No

List of participants (their unique
identifier and party role)
participating in this event. This is
represented as an embedded array
within TrackableEvent.

eventCategory String No

This attribute may be used to filter
events based on certain categories
(performance optimization). There
may be further subcategorization
of events as more use cases are
discussed. Broadly, event should
be categorized as normal or
unexpected.

reason String No

In case of an unexpected or
exception event, report the reason
for this event.

BiTAS Tracking Data Framework Profile

 15

TrackableEntity Class Yes

Broadly, TrackableEntity is used to
define ShipUnit, various types of
HandlingUnits, Conveyor and/or
Document. Our recommendation
is to use TrackableEntity as a
parent class to store common
attributes for each trackable entity
which may be defined within your
Work Group. Currently, this class
is used within the context of
Shipment Tracking, but it is generic
in nature, and may be used to
track additional assets in the
future.

references Reference [0..*] No

References are an embedded array
within TrackableEvent to store any
IDs or information of other entities
to better correlate events.
References may also be used with
other entities such as ShipUnit,
Equipment etc. However, when
they are used within the context of
TrackableEvent, they usually refer
to the information associated with
this event.

8.2 EventParticipant class

This is represented as an embedded array within TrackableEvent. This class shows the
information related to who issued the event, and the list of participants who are the
recipient or impacted by this event.

Attribute Name DataType Mandatory Purpose

EventParticipant Class

ID String points to Party Class ID

role String

Party roles examples would be
Driver, ShipmentPlanner,
OperationSupervisor, etc.

8.3 TrackableEntity

TrackableEntity is a genesis class for anything trackable within the blockchain. Currently,
it serves as a base class for ShipUnit, HandlingUnit, Document, and/or Conveyor.
HandlingUnit is further extended to create several subclasses including Trailer, Pallets,
Boxes, Envelopes, etc. In the future, it may be used by other Work Groups to define
additional sub-classes which may need to be tracked. TrackableEntity contains an
attribute,” parentEntityID”, which holds the ID of a parent TrackableEntity.

BiTAS Tracking Data Framework Profile

16

For example, a Box class inherits from TrackableEnity, a Pallet class inherits from
TrackableEntity and also a Trailer class inherits from TrackableEntity. The parentEntityID
of Box points to Pallet and parentEntityId of Pallet points to Trailer, and so on. This allows
tracing information right from the box to the Trailer in the HandlingUnit Hierarchy.

TrackableEntity contains an array named “contents”, which holds IDs of TrackableEntity
or its subclasses. IDs stored in “contents” array in blockchain refer to SU and HU objects
which need to be tracked in Blockchain.

Attribute Name DataType Purpose

TrackableEntity Class

name String Name of the TrackableEntity.

parentEntityID String
ID to TrackableEntity which serves as the
parent or container to the current entity. This
enables recursive structure.

entityType String
Currently supported types are ShipUnit,
various types of HandlingUnits, Conveyor,
Document.

contentType String [0..*]
Type of contents. This may include
commodity type. Hazard classification, etc..

contents String [0..*]

IDs of content which are being tracked in
Blockchain. entityType defines the type of
content which may be tracked, and this array
stores their IDs.

references
Reference
[0..*]

any additional references, e.g. master tracking
number associated with this entity.

itemCount MeasureType

this attribute is shown grayed out. This
attribute may not be needed as the number of
content IDs may be derived by querying the
size of the array.

9.0 Example

The diagram in Figure 9 shows an example of how Shipment may be tracked by the logical
model defined in this Profile. Consider the following scenario:

1. Each iphone sold in stores would be a Packaged Item.
2. Six iphones (Packaged Item) go into a small box. The small box would have packagingType.

packagingType = 'OneRate Box' specifies the type of carton.
3. Two hundred small boxes go onto a pallet. The pallet would be of class Handling Unit –

Pallet as defined in the model above.
4. Twenty pallets fit into a twenty-foot container. The container would be of class Handling

Unit - Trailer (type: Container).
5. Four Containers are loaded on 1 Handling Unit - Trailer. Same class is used to represent

both Handling Units (HU), Trailer and Container here.

BiTAS Tracking Data Framework Profile

 17

Specification Step:
First, you must define a ShipUnit (SU) Specification for small box of 6 iPhones. Then assign
packagingType of 'OneRate Box' to it. Shipment class stores “totals” information related
to its collection of SUs. Each SU’s shipmentID points to Shipment class.

Consolidation Step:
Depending on your scenario, you may skip consolidation step and directly track SUs. In
this case contents array in TrackableEntity will store list of all the SU’s ID. However, in
our scenario we are showing consolidation step where several SUs are assigned to
multiple levels of HUs.

During consolidation step,

 SUs will be assigned to HU – Pallet. SU’s parentEntityID will point to HU – Pallet.

 HU-Pallet’s parentEntityID will be assigned to HU - Trailer (type: Container),

 and then container will be assigned to HU – Trailer via its parentEntityID.

The above consolidation is one illustration, many other combinations are possible. For
example, if it's pallets, then it's associated to a trailer directly; if it's parcels, then it could
be in a container which is then loaded in a trailer; or a bulk loaded trailer full of parcels
would have the SUs directly associated to the trailer.

Tracking:
Now a TrackingEvent named "Tendering" is created on the Blockchain which points to a
TrackableEntity (TE) via trackableEntityID. Depending on how much information you
would like to store and share on the Blockchain, TE's contents array attribute may be
assigned. If you are interested in only tracking the outermost HU, which in our case
would be of type HU-Trailer, then contents array will contain IDs of HU - Trailer. Or if you
want to share and track all levels of information, then contents array may to points SUs
which will require you to store all SUs and HUs on the blockchain. parentEntityID of SU
will point to HU-Pallet and HU-Pallet's parentEntityID will point to HU- Trailer, and so on.
This enables model to track entities at any level.

BiTAS Tracking Data Framework Profile

18

Figure 9: Example showing how shipment may be tracked

9.1 Simple Box Tracking

Figure 9.1 below shows the simplest tracking example where only 1 ShipUnit (SU) is
created and loaded on the Blockchain first, and then TrackableEvent (Evt) is created.
trackableEntityID attribute of TrackableEvent links to this SU.

Figure 9.1: Simple example of tracking 1 SU

9.2 Multiple Package Tracking

The screen below shows a shipment being created with 2 boxes and 1 packet. All 3 entities
will be modelled as SUs and tracked together as 1 TrackableEntity.

Single Piece Shipment – tracking

Proof of Pickup Multiple In-transit Scans Proof of Delivery
123456789 Date, time, location, status, etc. 123456789

Our “Piece” is a
“ShipUnit.”
contents[] array of
TrackableEntity
(TE) only contains
1 SU.

TrackableEvents will be
associated with this TE
TrackableEvents will be
associated with this TE

TrackableEvents will be
associated with this TE

TrackableEvent(s) will be
associated with this TE

BiTAS Tracking Data Framework Profile

 19

Figure 9.2a: Example User Interface showing creation of Shipment with 3 SUs

Figure 9.2b: Example showing how SU, TE are assigned

In the example above, 3 SUs are created on the Blockchain and their IDs are assigned to contents
array of 1 TrackableEntity. Then an event “Schedule Pickup” is created and the trackableEntityID
points to this TE.

After the shipment is created, in this case, three shipping labels would be created and one would be attached
to each piece. The PIN number on the first label is the Shipment PIN.

“Totals” information is
in Shipment class

3 SUsShipment is collection of 3 SUs.
Also includes OD information.

Multi-piece Shipment – tracking of Shipment. ShipUnits are created first.

Proof of Pickup Multiple In-transit Scans Proof of Delivery

SU1234 Date, time, location, status, etc.

SU3456
SU678

ShipUnit2 and ShipUnit3 references: SU1234

You have 3 SUs (2 boxes and 1
packet). You may choose to track
them as single TrackableEntity (TE);
in this case, contents[] array of
TrackableEntity will have IDs of the
3 SUs. Shipment will be collection of
3 SUs but only holds “totals”
information. Shipment by itself is
not trackable.

In the event you track at trailer
level:

Assume these 3 SUs are loaded in a
Trailer. In this case, you will create
HandlingUnit-Trailer (HU) and assign
3 SUs to HU. Now you may assign
HU’s ID as contents[] of TE or if
there is single trailer to be tracked
then directly assign this Trailer to
the event. Now if Trailer gets
scanned then all the SUs inside HU
will also be scanned.

Our “Piece”
is a

“ShipUnit1”

Our “Piece”
is a

“ShipUnit2”

Our “Piece”
is a

“ShipUnit3”

BiTAS Tracking Data Framework Profile

20

JSON example illustrates how the model is created for tracking purpose:

// Example 1:
// A Shipper is scheduling a pickup for 2 boxes of iPhones and 1 packet of manual from a Carrier to be
shipped to Best Buy.

trackableEvent1 = {
 "ID" : "trackableEvent1",
 "name" : "Schedule Pickup",
 "location" : "location123", //link to location where freight will be picked from
 "trackableEntityID" : "trackableEntity123", // link to entity which is being tracked in defined below.
 "reportedByID" : "party123",
 "reportedByRole" : "Shipper",
 "participants" : [
 {
 "ID" : "party456",
 "role" : "Carrier" // Service Provider responsible for moving the freight
 },
 {
 "ID" : "party789",// Dock Manager who is handing over freight to Carrier
 "role" : "DockManager"
 }
],
 "performedTime" : "2019-02-11T23:27:57-08:00"
}

// 1 trackableEntity is tracking 3 ShipUnits (SU) as a collection
trackableEntity123 = {
 "ID" : "trackableEntity123",
 "name" : "Best Buy iPhone Shipment",
 "contentType" : "ShipUnits",
 "contents" : ["SU1234", "SU3456", "SU678"]
}

SU1234 = {
 "ID" : "SU1234",
 "transportMode" : "LTL",
 "packagingType" : "BOX",
 "contentType" : "iPhone XR",
 "entityType" : "ShipUnit",
 "declaredWeight": {
 "size" : "120.0",
 "UOM" : "LBS"
 }
}

SU3456 = {
 "ID" : "SU3456",
 "transportMode" : "LTL",

BiTAS Tracking Data Framework Profile

 21

 "packagingType" : "BOX",
 "contentType" : "iPhone XR",
 "entityType" : "ShipUnit",
 "declaredWeight": {
 "size" : "120.0",
 "UOM" : "LBS"
 }
}

SU678 = {
 "ID" : "SU678",
 "contentType" : "iPhone XR",
 "transportMode" : "LTL",
 "packagingType" : "PACKET",
 "entityType" : "ShipUnit",
 "declaredWeight" : {
 "size" : "7.5",
 "UOM" : "LBS"
 }
}

// First you will create 3 SUs, then create 1 TrackableEntity (TE) and assign contents' array of with 3
SU's ID,
// and then create TrackableEvent (EVT)

9.3 Multiple level Tracking

Extending the above example further, assume the SUs are loaded on a Pallet and then the Pallet
is a loaded on a Trailer. In this case, you will create HandlingUnit-Pallet (HU) and assign 3 SUs
shown above to this HU. Then Pallet will be assigned to HU-Trailer. JSON example below shows
how relations are created for an event named “Arrival at Source”.

// Example 2:
// More complex example showing hierarchy of SU and HU. Shipper has packed SUs on
HandlingUnit - Pallets,
// and Trailer from Carrier is being loaded with Shipper's Pallets

trackableEvent2 = {
 "ID" : "trackableEvent2",
 "name": "Arrival at Source",
 "location": "location456",
 "trackableEntityID": "trailer1234",

BiTAS Tracking Data Framework Profile

22

 "reportedByID": "party123",
 "reportedByRole": "Carrier",
 "participants" : [
 {
 "ID" : "party123",
 "role" : "Shipper" // Shipper whose pallets are being loaded
 },
 {
 "ID" : "party789", // Dock Manager responsible for handing over freight to Carrier
 "role" : "DockManager"
 }
],
 "performedTime": "2019-02-11T23:27:57-08:00"

}

trailer1234 = {
 "ID" : "trailer1234",
 "entityType": "Trailer",
 "transportMode" : "TL",
 "actualWeight": {
 "size": "2000",
 "UOM": "LBS"
 }
}

// Following entities are created by Shipper
HU7000 = {
 "ID" : "HU7000",
 "name": "Pallet",
 "transportMode" : "LTL",
 "parentEntityID" : "trailer1234", // attribute inherited from TrackableEntity Class, points to
Carrier's trailer1234
 "actualWeight": {
 "size": "200",
 "UOM": "LBS"
 }
}

SU7001 = {
 "ID" : "SU7001",
 "name": "ShipUnit1",
 "transportMode" : "LTL",
 "parentEntityID" : "HU7000", // attribute inherited from TrackableEntity Class, points to Pallet
 "declaredWeight" : {
 "size" : "170.5",
 "UOM" : "LBS"
 }
}

BiTAS Tracking Data Framework Profile

 23

SU7002 = {
 "ID" : "SU7002",
 "name": "ShipUnit2",
 "transportMode" : "LTL",
 "parentEntityID" : "HU7000", // attribute inherited from TrackableEntity Class, points to Pallet
 "declaredWeight" : {
 "size" : "200",
 "UOM" : "LBS"
 }
}

10.0 Event Categorization

Broadly, Event may be categorized as planned or unplanned. Any Event which is expected or
occurs during normal processing of shipment may be categorized as planned. Categorization
of Events may be required in order to filter the number of Events returned within a Blockchain
ledger query.

10.1 Planned Events

A list of planned events is proposed in the embedded spreadsheet as an example. The Tracking
Data Work Group is releasing the logical model for review and a list of events will be published
as part of future work.

A list of Event names and their definitions is included in the spreadsheet embedded as example
here.

Worksheet%20in%2

0BiTAS%20Tracking%20Data%20Specification%20v9.xlsx

10.2 Unplanned Events

List of exception events may include:

Delay
Damage
Sighting

BiTAS Tracking Data Framework Profile

24

Pending
Clearance
Overdue
Completed
after Due
Date
Quantity
Change
Due Date
Change
Retender

11.0 Future Versions

 As consensus is achieved on standard methodologies for incorporating lists and attributes
into this Specification, future versions will be made available detailing these lists and
attributes. Event names and Party roles may be predefined in future version. As new
standards emerge from parallel workgroups, the definitions that are described here, that
are not directly related to tracking will be superseded by those respective groups

